
REPORT ON SOIL INVESTIGATION

-: NAME OF WORK :-

CONSTRUCTION OF
PROPOSED
G +12 (TWELVE)
STORIED RESIDENTIAL
BUILDING

LOCATION AT:-

SEVOKE ROAD, OPPOSITE SIKKIM PLAZA, WARD NO. 40(SMC) MOUZA DABGRAM, J.L.NO. 2 SHEET NO. R.S. 4 & 5, L.R. 4, R.S. PLOT NO. 114/352,115/355,116,116/179 & L.R. PLOT NO. -174,175,176,181 & 182

R.S. KHATIAN

701/9,845/1,845/2,845/3,845/4,845/5,845/6,845/7, 845/8,845/9,845/10 L.R.KHATIAN NO. 1001,1002,1853,1854,1855(OLD) 1907 (NEW) ,P.S. BHAKTINGAR, DIST. JALPAIGURI.

CLIENTS:-

BUILWORTH DEVELOPERS
REPRESENTED BY ONE OF ITS PARTNER
SRI MANISH KUMAR AGARWAL S/0. SRI DURGA PRASAD
AGARWAL.

INVESTIGATOR

ACHARYA ASSOCIATES

GEO-TECHNICAL SOIL INVESTIGATION, MATERIAL TESTING SURVEYING (DIGITAL), PLANNING AND ESTIMATING 35, DINABANDHU MITRA SARANI, SUBHASPALLY, SILIGURI. DIST- DARJEELING, Pin-734001 CELL-9851173583/94340-48977/9832375155/9434020082 Email- acharyamainak@gmail.com

CONTENTS

Sl. No.	Description	Pages
01	Introduction and scope.	02-02
02	Detail of Soil Investigations	03-05
03	Site plan	06-06
04	Bore-log Data sheet (Tab-1 to 2)	07-08
	_	
05	Grain Size analysis	09-10
0.6		11 11
06	Estimated Physical Properties of soil (Tab-3)	11-11
07	Connection of field CDT (N) Value (Tab. 4)	12-12
07	Correction of field SPT (N) Value (Tab-4)	12-12
08	Calculation of Net safe Bearing Capacity for General Shear Failure(Tab-5)	13-13
09	Calculation of Net safe Bearing Capacity for Local Shear Failure (Tab-6)	14-14
	Summary Table of calculation of Net Safe Bearing Capacities	
10	based on Shear Failure and Settlement criteria as per Codal	15-15
	Provisions based on which Suggested Net Safe Bearing Capacity has been recommended. (Tab-7)	
	Capacity has been recommended. (1ab-7)	
11	Photography	16-16
**	1 HotoBraphy	10 10

INTRODUCTION AND SCOPE:

Soil investigation has been carried out at SEVOKE ROAD , 3^{RD} MILE for the purpose of designing suitable foundation for GROUND + 12 STORIED RESIDENTIAL BUILDING

The objective of the exploration work was to determine the probable sub surface conditions such as stratification, denseness or hardness of the strata, position of ground water table etc. and to evaluate probable range of safe bearing capacity for preparing safe and economic design of foundation.

The plot is more or less level and the Spot is same from existing road level. Two 150 mm dia bore holes were taken down to a depth of 8 m below the existing ground level at the site as per location shown in the site plan. Auger boring and bentonite mud drilling were used for drilling the holes. Standard Penetration Test was done on the soil at different depth.

Laboratory testing on selected undisturbed/representative soil samples were done for classification purpose and to determine their strength & other physical properties.

THE FOLLOWING TESTS WERE ONE FOR DETAILS SOIL INVESTIGATION:-

(A) FIELD TESTS:

- 1. Standard penetration tests.
- 2. Determination of In-Situ density.

(B) **LABORATORY TESTS**:

- 1. Natural moisture content
- 2. Specific Gravity
- 3. Grain size analysis.

1. Standard Penetration Tests:

A standard split spoon sampler is driven 45 cm into the ground by means of a 63.5 kg hammer falling freely from a height of 75 cm. The total number of blows required to drive the second and third depth of 15 cm (i.e. total 30 cm) is called the standard Penetration resistance (N blows per 30 cm). After the blow counts are recorded, the spoon is withdrawn and a representative sample is obtained for identification tests. The N value has been corrected as per IS: 2123-1981.

Corrections:

- <u>a)</u> <u>Due to Overburden</u> The N value for cohesion less soil shall be corrected for overburden (N').
- <u>b)</u> <u>Due to Dilatancy</u> The value obtained after correction due to overburden shall be corrected for dialatancy if the stratum consists of fine sand and silt below water table for values of N' greater than 15, as under (N"):

$$N'' = 15 + \frac{1}{2} (N' - 15)$$

2. <u>Determination of In-Situ density:</u>

The in-situ density of soil is determined by core cutter method as per IS: 2720 (Part XXIX) - 1975.

(B) <u>LABORATORY TESTS:</u>

The soil samples collected from the bore holes during field Investigation were sent to the laboratory for determination of soil classification and physical properties.

The following laboratory tests were conducted on soil sample.

1. **Natural moisture content**: It is the ratio of weight of water in the voids to the weight of solids. It is expressed as percentage.

It is determined in the laboratory by Oven drying method as per IS: 2720 (Part-II)-1973. In this method the soil sample (collected in the air tight polythene pack) is dried in thermostatically controlled oven at 105-110°C for 24 hours.

2. **Specific Gravity**: Specific gravity is the ratio of the weight in air of a given volume of a material at a standard temperature to the weight in air of an equal volume of distilled water at the same stated temperature.

The specific gravity of soil sample is determined by density bottle method as per IS: 2720 (Part III/Sec 1) - 1980.

3. Shear Strength test:

When an external load is applied on a soil mass, shearing stresses are induced in it. If the shear stress developed on any plane in the soil exceeds a certain limiting value, failure of the soil occurs.

The maximum shear stress which a given soil can withstand is called its shear strength. The factors governing the shear strength of a soil are :

- (a) Internal friction.
- (b) Cohesion.

As it is seen from two no's bore log data sheet that the average soil strata at 2 to 4 m is fine, medium & coarse sand, which is **cohesionless(C=0)**, so **shear** parameter angle of internal friction (Ø) is found out from correlation between angle of internal friction and corrected SPT value as per IS 6403: 1981.

Unconfined Compression test and Vane Shear test is applicable for pure forms of clay.

2. Grain size analysis:

The soil samples collected from the different depths were used for determination of Grain Size analysis. This is determined in the laboratory by the mechanical analysis, which consists of:-

(a) Dry mechanical analysis or sieve analysis. [IS-2720 (Part-4)- 1985]

(b) Wet mechanical analysis or hydrometer analysis. [IS-2720 (Part-4)- 1985]

Determination of Net Safe Bearing Capacity of Soil:

Net Safe Bearing capacity of soil is determined considering the following two aspects:

- 1. **Shear failure of soil as per IS:6403-1981**: Under this aspect calculations are made for both General Shear failure and Local Shear failure and appropriate value of the either, or a interpolated value as per void ratio is determined as the net safe bearing capacity from shear failure point of view.
- 2. **Allowable settlement as per IS: 8009 (Part-1)-1986:** Maximum permissible settlement for R.C.C. structure and the type of soil as mentioned in the report(sandy) is 50mm as per IS: 8009 (Part-1)-1986. In the present case considering all aspects, allowable settlement as indicated in the Net allowable bearing capacity Table has been assumed to determine the Net Safe bearing capacity by the formula suggested by Bowles (1988):

Net Safe Bearing Capacity = $48N_{cor}R_d((B+.33)/2)^2 S_aR_W$

Where

N_{cor}= Design N (SPT) Value

Sa= Allowable Settlement

R_d= Depth Correction Factor =

B= Width of Footing

 R_W = Water Table Correction

The **Net allowable bearing capacity** is taken as the lesser of the two values determined considering the above two aspects.

The calculations are shown in table- 3, 4, 5, 6 & 7

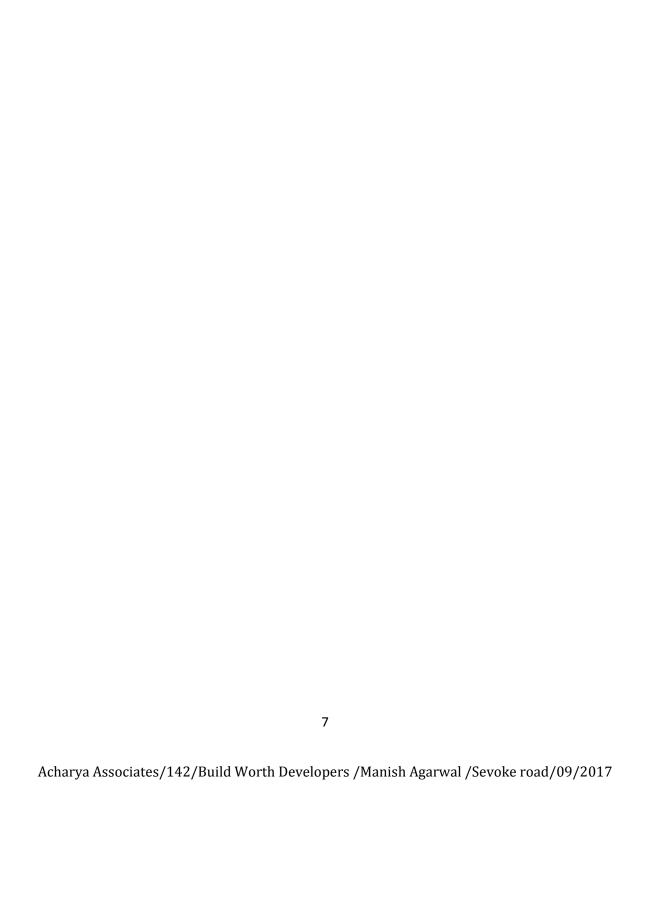


Table-1

BORE LOG DATA SHEET

TYPE OF BORING	SHELL & AUGER				TYPI DRILI	
DIA OF BORE	150 MM		150 MM BMD		ID	
TERMINATION DEPTH	8.			00 1	m	
COMMENCED	ON:		CO	MP	LETED	ON:
30/07/201	30/07/2018					
GROUND WATER	0.9	91 I	M d	own fro	om G.L	
DECEDIDATION OF CAD	ATA I CO	CMD I	rn o	1 /	TΩ	Tl.: -1

BORE HOLE NO. 1						
GROUND/ The spot is same						
BED RL	from road level.					
L	OCATION					
3 RD , Mile Sevoke Road, P.S.						
Bhaktinagar, dist. Jalpaiguri.						

DESCRIPTION OF STRATA	LEGEND	FROM	TO	Thickness	N	SAM	PLES	DEPTH
		m	m	m	Value	Туре	Ref. No.	m
Silty fine, medium, Course sand with Gravel grey in colour.		2.00	2.45	0.45	15	Р	P-I/1	2.15-2.45
Do	•	3.00	3.45	0.45	27	P	P-I/2	3.15-3.45
Do		4.00	4.45	0.45	37	P	P-I/3	4.15-4.45
Silty fine, medium, Course sand with Gravel grey in colour.		5.00	5.45	0.45	57	Р	P-I/4	5.15-5.45
Do		6.00	6.45	0.45	104	P	P-I/5	6.15-6.45
Do		7.00	7.45	0.45	122	P	P-I/6	7.15-7.45

Do	8.00	8.45	0.45	125	P	P-I/7	8.15-8.45
----	------	------	------	-----	---	-------	-----------

Code : U-Undisturbed sample, D – Disturbed Sample, L – Large Diameter, C – Core W-Water Sample, P-Penetration. Test, V – Vane Shear Test

No. of disturbed Sample : NIL

No. of UDS: NIL

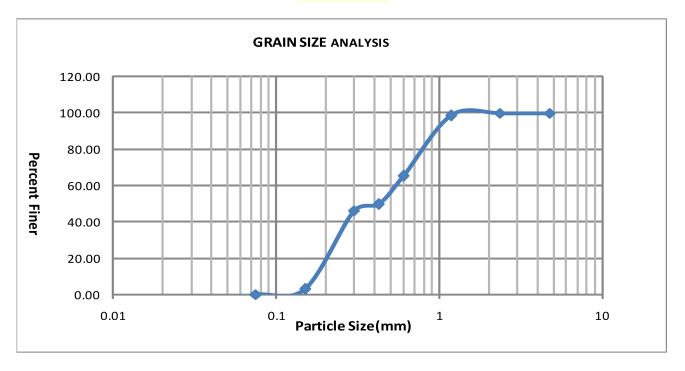
No. of Vane Test : NIL

No. of Large Diameter Sample: NIL No. of S.P.T.: SEVEN (07) No. of Water Sample: NIL

Table-2

BORE LOG DATA SHEET

TYPE OF BORING	SHE	ELL & A	L & AUGER TYPE OF DRILLING				ВО	RE HOLE	E NO. 2		
DIA OF BORE		150 MM BMD			D			OUND ED RL		spot is same n road level.	
TERMINATION DEPTH		8.00 m					LOCATION			ON	
COMMENCED	ON:		C	OMPI	ETED (: NC		31	RD _{, Mi}	le Sevok	e Road, P.S.
30/07/201	8			30/0	07/201	8					
GROUND WATER	LEVE	EL	0.9	1 m d	own fro	m G.L		Bhaktinagar, dist. Jalpaiguri.			t. Jalpaiguri.
DESCRIPTION OF STRA	ATA	LEGEN	ID I	FROM	TO	Thickness	N		SAM	IPLES	DEPTH
				m	m	m	Val	ue	Type	Ref. No.	M
Silty fine, mediun Course sand with Gravel grey in colo	ı			2.00	2.45	0.45	1:	3	P	P-II/1	2.15-2.45
Do		`		3.00	3.45	0.45	2	7	P	P-II/2	3.15-3.45
Do	Do			4.00	4.45	0.45	4	1	P	P-II/3	4.15-4.45

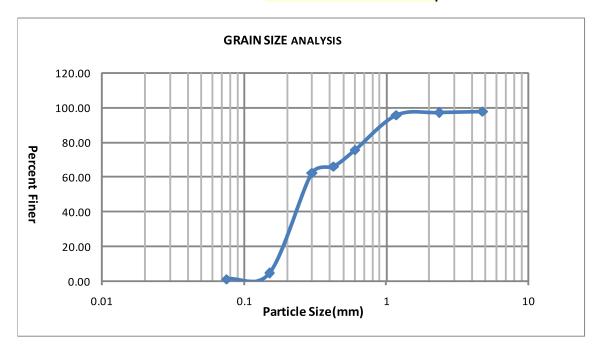

Silty fine, medium, Course sand with Gravel grey in colour.	5.00	5.45	0.45	57	Р	P-II/4	5.15-5.45
Do	6.00	6.45	0.45	124	P	P-II/5	6.15-6.45
Do	7.00	7.45	0.45	120	Р	P-II/6	7.15-7.45
Do	8.00	8.45	0.45	123	P	P-II/7	8.15-8.45

 ${\it Code: U-Undisturbed\ sample,\ D-Disturbed\ Sample,\ L-Large\ Diameter,\ C-Core\ W-Water\ Sample,\ P-Penetration.\ Test,\ V-Vane\ Shear\ Test}$

 $\begin{tabular}{ll} No. of disturbed Sample: NIL & No. of UDS: NIL & No. of Vane Test: NIL \\ No. of Large Diameter Sample: NIL & No. of S.P.T.: SEVEN (07) & No. of Water Sample: NIL \\ \end{tabular}$

	GRAIN SIZE ANALYSIS OF BORE HOLE 1 AT DEPTH 3 M							
Total wt of sample = 329.2 gm								
Sieve size	Wt. of	Wt.of	Wt. of soil	Percent	Cumulative	Percent		
	Sieve	Sieve +		retained	retained	finer		
		soil						
mm	gm	gm	gm	(%)	(%)	(%)		
4.75	424.2	424.6	0.4	0.12	0.12	99.88		
2.36	377.8	378.2	0.4	0.12	0.24	99.76		
1.18	342	346	4	1.22	1.46	98.54		
0.6	363.8	473.4	109.6	33.29	34.75	65.25		
0.425	321.4	372.6	51.2	15.55	50.30	49.70		
0.3	345.6	357.6	12	3.65	53.95	46.05		
0.15	346.2	487.4	141.2	42.89	96.84	3.16		
0.075	338	348.2	10.2	3.10	99.94	0.06		

PAN 0.2



CLAY %	SILT %	SAND %			GRAVEL %
		FINE %			
0	0.06	49.64	50.06	0.12	0.12

Uniformity Co-efficient(Cu) = $\frac{D60}{D10}$ 3 11

100

GRAIN SIZE ANALYSIS OF BORE HOLE 2 AT DEPTH 3 M									
Total wt of sample 162.2 gm									
					Cumulati				
					ve				
	Wt. of	Wt.of	Wt. of soil	Percent	percent	Percent			
Sieve	Sieve	Sieve +		retained	retained	finer			
size		soil							
mm	gm	gm	gm	(%)	(%)	(%)			
4.75	424.2	427.4	3.2	1.97	1.97	98.03			
2.36	377.8	379.2	1.4	0.86	2.84	97.16			
1.18	342	344.4	2.4	1.48	4.32	95.68			
0.6	363.8	396.4	32.6	20.10	24.41	75.59			
0.425	321.4	336.6	15.2	9.37	33.79	66.21			
0.3	345.6	351.8	6.2	3.82	37.61	62.39			
0.15	346.2	439.8	93.6	57.71	95.31	4.69			
0.075	338	343.4	5.4	3.33	98.64	1.36			
PAN			2.2	1.36					

CLAY %	SILT %		GRAVEL %		
		FINE %	MEDIUM %	COARSE %	

Table-3

ESTIMATED PHYSICAL PR	OPERTIES OF S	OIL	
Depth	2	3	
Bulk Density, γ _{bulk} (t/m³)	2.06	2.02	
NatUral Moisture content,w(%)	21.27	24.9	
Natural dry density,γ _{dry} (t/m³)	1.70	1.62	
Specific Gravity, G	2.64	2.64	
Void Ratio, e	0.55	0.63	
Saturated density, ysat(t/m3)	2.06	2.00	
Submerged Density γsub(t/m3)	1.06	1.00	
Angle of Internal Friction(Ø)	32.88	37.31	
Angle of Internal Friction(Ø')	23.41	27.05	

Table-4

SPT(N) VALUE CORRECTION									
Depth(M)	Ybulk (gm /cc)	ЕОР	(C _n).	N	N'	N"	Design N Value		
2	2.06	0.412	1.29	13	16.74	15.87	19.50		
3	2.02	0.606	1.16	27	31.26	23.13	35.24		
4	2.02	0.808	1.08	37	39.84	27.42	42.48		
5	2.02	1.01	1.00	57	56.86	35.93	48.10		
6	2.02	1.212	0.95	99	93.96	54.48	52.16		
7	2.02	1.414	0.90	99	89.16	52.08	51.00		
8	2.02	1.616	0.86	99	84.82	49.91			

N = Field N Value(Minimum of all bore holes)

N' = N Value after overburden correction

N" = N Value after Dilatancy correction

EOP = Effective overburden pressure

 C_n = Overburden correction

Table-5

Calculation of Net Safe Bearing Capacity as per IS-6403:1981,Based on								
General Shear Failure with Ø determined from Design 'N' value, derived from corrected field N value as per IS- 2131:1981.								
Width (B in metre)	2	3	4	3	4	6		
Submerged Density of Soil(t/m3)	1.06	1.06	1.06	1.00	1.00	1.00		
Saturated Density of Soil(t/m3)	2.06	2.06	2.06	2.00	2.00	2.00		
Depth(D in metre)	2	2	2	3	3	3		
Surcharge (q in t/ m2)	2.11	2.11	2.11	3.01	3.01	3.01		
Ø(degree)	32.88	32.88	32.88	37.31	37.31	37.31		
Water table correction(w ^I)	0.5	0.5	0.5	0.5	0.5	0.5		
Shape factors								
sq	1.2	1.2	1.2	1.2	1.2	1.2		
s_{γ}	0.8	0.8	0.8	0.8	0.8	0.8		
Depth factors								
${ m d_q}$	1.17	1.12	1.09	1.17	1.13	1.1		
d_{γ}	1.17	1.12	1.09	1.17	1.13	1.1		
Inclination factors								
$i_{ m q}$	1	1	1	1	1	1		
i_{γ}	1	1	1	1	1	1		
Bearing capacity factors								
${ m N_q}$	26.97	26.97	26.97	47.58	47.58	47.58		
N_{γ}	37.14	37.14	37.14	76.39	76.39	76.39		
$q.(N_q -1).s_q.d_q.i_{q (t/m2)}$	76.95	73.66	71.68	197.10	190.36	185.31		
$0.5.B.\gamma_{\mathrm{sub}}.N_{\gamma}.s_{\gamma}.d_{\gamma}.i_{\gamma}.w^{\mathrm{I}}(t/m^{2})$	35.72	51.29	66.56	107.50	138.43	202.1		

<u>Table-6</u>

Calculation of Net Safe Bearing Capacity as per IS-6403:1981,Based on <u>Local Shear Failure</u> with Ø' determined from Design 'N' value, derived									
from corrected field N value as per IS- 2131:1981.									
Width (B in metre)	2	3	4	3	4	6			
Submerged Density of Soil(t/m3)	1.06	1.06	1.06	1.00	1.00	1.00			
Saturated Density of Soil(t/m3)	2.06	2.06	2.06	2.00	2.00	2.00			
Depth(D in metre)	2	2	2	3	3	3			
Surcharge (q in t/ m2)	2.11	2.1105	2.11	3.01	3.01	3.014			
Ø'(degree)	23.41	23.41	23.41	27.05	27.05	27.05			
Water table correction(w ^l)	0.5	0.5	0.5	0.5	0.5	0.5			
Shape factors									
sq	1.2	1.2	1.2	1.2	1.2	1.2			
S_{γ}	0.8	0.8	0.8	0.8	0.8	0.8			
Depth factors									
$ m d_q$	1.17	1.12	1.09	1.17	1.13	1.1			
d_{γ}	1.17	1.12	1.09	1.17	1.13	1.1			
Inclination factors									
\mathbf{i}_{q}	1	1	1	1	1	1			
\mathbf{i}_{γ}	1	1	1	1	1	1			
Bearing capacity factors									
$N'_{ m q}$	9.31	9.31	9.31	13.83	13.83	13.83			
N'γ	9.14	9.14	9.14	15.60	15.60	15.60			
$q.(N'_q -1).s_q.d_q.i_{q (t/m2)}$	24.62	23.57	22.94	54.30	52.44	51.05			
$0.5.B.\gamma_{\text{sub}}.N'_{\gamma}.s_{\gamma}.d_{\gamma}.i_{\gamma}.w^{I}(t/m^{2})$	8.79	12.62	16.38	21.95	28.27	41.28			

Ultimate net bearing capacity(t/m²)

Table-7

Summary Table of calculation of Net Safe Bearing Capacities based on Shear Failure and Settlement criteria as per Codal Provisions based on which Suggested Net Safe Bearing Capacity has been recommended.

Depth	Width(B) Metre	Lengt h(L)	Net Safe Bearing Capacity Based on General Shear Failure(t/m ²)	Net Safe Bearing Capacity Based on Local Shear Failure(t/m ²	Void Ratio	Net Safe Bearing Capacity Based on Void Ratio(t/m ²)	Net Safe Bearing Capacity Based on Allowable Settlement(25 to 50mm)(t/m 2)	Suggested Net Safe Bearing Capacity (t/m ²)
	6	6	101.53	25.42	0.63	70.19	36.57	36.57
3 Mrtre(MAT)	6	6	76.15	19.06	0.63	52.64	36.57	36.57
I WAT	6	6	109.60	26.90	0.63	75.55	36.57	36.57

Recommendations:-

- 1. Above recommendations are made for Raft type footings of mentioned minimum size(6mx 6m) and depth.
- 2. Observation valid only for specified bore hole positions.
- 3. Exact settlement calculation should be done for foundation design.

PHOTOGRAPH

